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Abstract

Cell division is a fundamental process to life, without which organisms cannot grow, repair or repro-

duce. The final stage of cell division in animal cells, separating the two divided cells by cutting the

cell membrane between them. The group of proteins required for this process is called ESCRT-III.

As yet, the underlying physical mechanism for this cutting process remains unknown. Faults in

this process can lead to cell abnormalities such as tumour growth. Therefore, understanding these

proteins is a vital area of research. Recent evidence shows that the proteins that drive the cell divi-

sion in the single-celled organism Sulfobolus Acidocaldarius is genetic homologues of the ESCRT-III

proteins.1 As such, understanding cell division in these relatively simple cells can help us understand

processes in more complex cells.

Previous difficulties associated with live-imaging S. Acidocaldarius have been overcome by Pulschen

et al.2 with the custom-built "Sulfoscope". This project uses time-lapse movies taken by Pulschen

et al. and measures the midcell diameter of the dividing cells over time. These measurements are

fitted with power curves of the form d(t) = ctα + b to quantify "shape" and the average rate of

the division, α and c. The shape of division describes how the rate of division changes over time

where α = 1 represents a constant rate of division. Analysis of two different phenotypes of S.

Acidocaldarius provided average values of α = 0.96 ± 0.13 and 1.01 ± 0.16 which strongly suggests

that S. Acidocaldarius divides at a linear rate, in agreement with previous research. The rates of

division was measured to be c = −0.04± 0.02 µmmin−1 and c = −0.05± 0.02 µmmin−1 which is

approximately a decrease of 5% per minute.

The Šarić group has previously developed a successful cell division simulation model consisting of

a membrane and a constricting protein filament, based on experimental observations of S. Acido-

caldarius.3 This project furthers this work by adding cytoplasm particles into the simulated cell.

Comparisons were made between the original and the modified cell by measuring the midcell diam-

eter of the simulated cells over time for multiple configurations. The addition of cytoplasm particles

have been shown to affect the successful outcome of the simulation. Furthermore, simulations show

that the greater the number of cytoplasm particles within the cell, the slower the rate of division.
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1 Introduction

Archaea represents one of the three domains of life alongside Eukaryota and Bacteria. Archaea

represent a diverse group of single-celled organisms that live in extreme conditions and have a

unique mix of bacterial and eukaryotic traits. The majority of Archaeons are further classified into

two main phyla Euryarchaeota and Crenarchaeota.4 Bacteria and Euryarchaeota utilise the same

proteins for cell division.5 Recent evidence shows that the cell division proteins in crenarchaeons

are genetic homologues to membrane cutting proteins in eukaryotes.1 In eukaryotes, these proteins

perform a wide range of membrane cutting roles that include cytokinesis, the last stage of cell

division. The failure of cytokinesis can lead to the development of tumour cells. It is therefore

necessary to understand how these ESCRT-III proteins drive cytokinesis.6

As a consequence of their similarities, the understanding gained from the underlying physical mech-

anism of cell division in simple crenarchaeons can be used to understand cytokinesis in, the more

complex, eukaryotes.

The overall aim of this project is to try to gain further understanding of cell division in the cre-

narchaeon Sulfolobus acidocaldarius in hopes of applying the knowledge to membrane cutting in

eukaryotes. Experimental observations and computer simulations can be used collaboratively to

provide insight into this process.

In this project, the midcell diameter for live and simulated cells were measured over time. The

midcell diameter is defined as the diameter across the cell’s dividing region, Fig. 1.

Figure 1: A diagram defining the midcell diameter and shows how it changes over division time.

This diameter decreases during cell division, and by measuring this diameter, rate of cell division

can be determined and, in turn, provide insight into the dynamics within the cell.

Prior to this project, the midcell diameter was measured for live and simulated dividing S. acido-

caldarius cells and the results are shown in Fig. 2.

Fig. 2 shows a disagreement between the two measurements where the experimental evidence shows

that the cells divide linearly, i.e. at a constant rate. However, the rate of division of the simulated

cell slows down over time. Although the diameter of the simulated cell was measured over simulation

time, it was, at the time, not possible to measure the diameter of the live cells over real-time. Instead,

the midcell diameter of a large sample of cells was measured in one snapshot of time, and the results
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Figure 2: A graph showing midcell diameter over time as a cell divide. Results are gathered from

previous experimental measurements and simulations. (Figure by Risa et al.)3

were ordered in size.

New advances in live-cell imaging and fluorescence microscopy means that S. acidocaldarius cells

can be imaged over time. One of the objectives of this project is to verify whether S. acidocaldarius

cells divide linearly over time by measuring the midcell diameter of cells over time of these live-cell

images using image processing software.

In previous research, a simulated cell model was developed based on the experimental observations

of S. acidocaldarius and proved useful in examining the internal mechanics of division.3 Simulation

experiments provide useful cross-reference for experimental observations. The simulated cell was

modelled only to contain solvent, whereas, in reality, cells are filled with cytoplasm that contains

lots of biological molecules. The second objective of this project is the addition of "cytoplasm"

particles to the existing cell model to improve the model and to try to account for the discrepancy

in Fig. 2.
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2 Measurement of Live-Cell Images

2.1 Background

2.1.1 Cell Division

Cell division protein complexes are well established in Bacteria, Eukaryota and Euryarchaeota.

Cell division machinery was recently discovered in the crenarchaeon S. acidocaldarius in 2008.1

Protein complexes responsible for division include: FtsZ for bacteria and euryarchaeons,5 ESCRT-

III for eukaryotes7 and CdvB -1,-21 for crenarchaeons. They all similarly drive cell scission; proteins

polymerise as a spiral or ring at the midbody of the dividing cells before producing a constriction

force that causes abscission. How these proteins produce a constricting force that drives cell division

remains unknown.8,9 ,10

2.1.2 Eukaryotic Cell Division

Eukaryotic cells contain membrane-bound compartments and are typically 10−100µm in diameter.

eukaryotes can reproduce asexually, producing two genetically identical daughter cells and sexually,

producing four genetically similar daughter cells.11 The Eukaryotic cell cycle is divided into phases

called G1, S, G2, M and cytokinesis. The order of these phases is regulated by cyclin-CDK complexes

which are regulating complexes not found in other organisms.12 Cytokinesis is the final stage in cell

division where the membrane between the two divided cells are cut, to separate them.13

The cutting of the cell membrane during cytokinesis is performed by a protein complex called

ESCRT-III. ESCRT proteins (-I, -II, -III, Vsp4) play other vital roles in eukaryotes such as viral

budding14 and multivesicular body (MVB) biogenesis.15 The importance of the roles performed

by ESCRT-III delineate the importance of researching how it works. ESCRT-III is thought to be

the only protein complex in eukaryotes that can cut cell membranes protruding away from the

cytoplasm.16 ESCRT-III has a short lifespan and is too small to see on a cellular membrane using

standard measurements hence deep-etch electron microscopy and gene knockdown were used to

probe the structure of ESCRT-III.17,18 Proteins within ESCRT-III were shown to polymerise into

filaments on cell membranes in a variety of shapes including rings, helices, flat and conical spirals.19

2.1.3 Cell Division in S. acidocaldarius

S. acidocaldarius is considered to be the "model" crenarchaeon as it is aerobic and its genes are

well-characterised.20 It is also a thermoacidophile that grows optimally between 75 and 80 °C and

between 2 and 3 pH. S. acidocaldarius cells are typically spherical with a diameter between 0.8-1

µms.

In 2008, Lindås et al.1 identified three protein complexes CdvA, - B, -C in S. acidocaldarius, respon-

sible for cell division. They further showed that this division machinery is found in all crenarchaeons.
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Moreover, they discovered that CdvB proteins, including CdvB1/2, are genetic homologues of the

Eukaryotic protein machineries, ESCRT-III. Therefore, it is likely that ESCRT-III proteins are highly

evolutionarily conserved and that Eukaryota and Crenarchaeota share a common ancestor.3 This

evidence also gives credence to the Eocyte hypothesis which suggests that crenarchaeons are related

to the origin of eukaryotes.21

CdvB proteins are sometimes referred to as "archaeal ESCRT-III" as they cut membranes in the same

way.22 Unlike in Eukaryotic cells, ESCRT-III drives the whole cell division process in crenarchaeons

as opposed to only the final stage. Understanding how archaeal ESCRT-III drives cell division in

simple crenarchaeons, can elucidate the various, vital roles ESCRT-III perform in Eukaryotic cells.

2.1.4 Live-Cell Imaging of S. acidocaldarius

Live-imaging of living cells using time-lapse microscopy is a technique used by cell biologists to un-

derstand the dynamic processes within cells.23 Live-imaging archaeons presents more challenges than

live-imaging of either bacteria or eukaryotes due to their small size and extreme living conditions.

As such, S. acidocaldarius has not been live-imaged until recently. Pulschen et al.2 have created the

novel "Sulfoscope", apparatus that can live-cell image S. acidocaldarius. The "Sulfoscope" consists

of a heated chamber and an inverted fluorescent microscope.

Time-lapse movies of live S. acidocaldarius cells imaged using the "Sulfoscope" were of an area

∼ 150µm × 150µm. These "movies" contained ∼ 102 S. acidocaldarius cells. Cells taken from

eight movies recorded during August 2019 and December 2019 were measured. The cell movies

were realised as a stack of sequential images which can be view using ImageJ, an image processing

software. The cells within the movies had different characteristics, including:

• Phenotype of S. acidocaldarius - Two genetic variations of S. acidocaldarius were imaged,

wildtype (WT) and a mutant (MW001).

• Fluorescently tagged cell components - In order for the cells to appear in the images, they

must be fluorescently tagged. This is where a particular component of a cell is attached with

a fluorescent substance that can be seen by the microscope. To see how the shape of the cell

changes, the membrane of the cell must be fluorescently tagged. In the WT cells, both the

membrane and the DNA of the cells were tagged. It was found that the toxicity of the DNA

dye reduced the rate of cell division. So when images of the MW001 cells were taken, only the

membrane was tagged. The cells containing DNA dye, therefore, may not be representative of

cells in nature.

• Time between image frames - the time interval between image frames varies depending on the

movie, either 1 or 2 minutes. Cell division has been recorded to take between 4-12 minutes.2

As such, a time interval of 2 minutes between each image results in only a few data points from
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which to fit the shape of the midcell diameter against time graph. For more reliable results,

the time interval should be as small as possible.

• Immobilisation of the cells - The immobilisation of the cells made cells easier to measure as

they would remain in approximately the same position throughout the movies. However, the

drawback of immobilisation is that it slows down the rate of cell division such that division

immobilised cells may not reflect the division of cells found in nature.

• Movie duration - The duration of the movies only affected the number of cells that undergo

cell division because the cells divide at random times.

• Doubling time - doubling time is the time it takes for the sample to double in quantity,

equivalent to the cell cycle of the cell. Immobilisation and DNA dye increase this time.

2.2 Methodology

2.2.1 Identifying Dividing Cells

Not all of the cells in a sample of imaged cells divide during the imaging duration. The dividing

cells are cropped out using ImageJ, forming smaller individual image stacks. Cropping the cells from

the master image stack serves to keep track of which images have already been measured. It also

serves to measure the cells on a more appropriate scale, i.e. ∼ 1µm rather than ∼ 100µm thereby

improving the accuracy of the measurements, as shown in Fig. 3.

Initially, the dividing cells were identified and cropped by eye by merely moving through the image

stacks and looking at which cells divide. During the project, a machine learning algorithm was

developed by collaborators of the Baum group that can automate the process of finding the dividing

cells and crop them out individually. The use of this algorithm drastically reduced the time taken

to find the dividing cell. Moreover, the algorithm was able to detect more dividing cells that were

missed by human error.

2.2.2 Taking Measurements using ImageJ

The movies of S. acidocaldarius are low-resolution due to the small size of the cells and the limited

resolution of the microscope. It is therefore difficult to determine the "edges" of the cell. The Full-

Width Half-Maximum (FWHM) of an intensity profile can be used to describe the measurement of

the width of an imaged object when the edges of the image are not sharp.24 The intensity profile of

the midcell diameter can be plotted calculated using ImageJ’s "line tool" as shown in Fig. 4

The x (distance) and y (gray value/intensity) data can be exported to a CSV file. A Python code

was written that took this CSV file as an input and fits a Gaussian function according to Eq. 1

using the curve_fit function in Python’s scipy library.
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a)

b)

~3 μm

~150 μm

Figure 3: a) A dividing cell cropped out of a time-lapse movie of MW001 S. acidocaldarius cells

using ImageJ software. b) A montage of images showing how the cropped cell divides over time,

with one image taken every minute.
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Figure 4: a) The intensity over the midcell axis of a cell is measured using the line tool in ImageJ.

b) The intensity is plotted against distance and fitted with a Gaussian curve. The FWHM of the

Gaussian is calculated by multiplying the standard deviation of the curve by 2
√

2ln2.

Gauss(x) =
1

σ
√

2π
e

1
2
(x−µ
σ

)2 (1)

Where µ is the mean of the Gaussian and σ is the standard deviation. The Python code then

calculates the FWHM according to by Eq. 2.
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FWHM = 2
√

2ln2σ ≈ 2.355σ (2)

Some images of the cells have two intensity peaks corresponding to two Gaussians. The two Gaus-

sians are present in the early stages of cell division, as shown in Fig. 5 a). This is due to the

overlapping membranes of the daughter cells that create two localised areas of increased intensity.

As the cell divides, the two areas move closer together until the two intensity peaks form one. Hence,

initial intensity measurements are plotted to fit two Gaussian curves, and the latter measurements

are plotted to fit one Gaussian.

FWHM = 1.5723

a)

b) c)

Subtract Background Intensity

Figure 5: a) In the early stages of division, cells appear to have two intensity peaks on the midaxis

of the cell due to the overlapping of daughter cells. The intensity over the midcell axis of a cell is

measured using the line tool in ImageJ. b) The intensity is plotted against distance and fitted with

two Gaussian curves, then zeroed by subtracting the background intensity. c) The two Gaussians

are then joined, and the FWHM is calculated from the combined Gaussian.

Additional Python code was written to fit two Gaussian curves to the intensity data. The code splits

the data into two halves and fits Gaussians to each half. The Gaussians are then added together to

create a unified curve shown in Fig. 5 c).

Calculations of FWHM using Eq. 2 is the most accurate method as it does not depend on any changes

in background intensity. However, σ cannot be calculated for two joined Gaussians. Instead, the

FWHM is calculated by first "zeroing" the joined Gaussian, then taking the difference between the

x values at half maximum. To "zero" the Gaussian, the background intensity needs to be subtracted
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from every value such that the "tails" of the Gaussian lies on zero. Due to the small length scale

of the measurements, the subtracted background intensity has a significant effect on the accuracy

of FWHM, so the background intensity must be calculated accurately. The background intensity

is calculated by taking the average of the "tails" of the Gaussian curves, shown in Fig. 5 b-c).

Background intensity can vary from image frame to frame so it must be recalculated for every

measurement.

The code for calculating the FWHM for one or two peaks can be found here:

https://github.com/TinaLanYao/Gaussian-Fitting.

2.2.3 Determining which Frames to Measure

This project is concerned with measuring the midcell diameter of cells over the time in which they

divide. At present, it can not be determined when the cells start or stop dividing without observing

the internal dynamics of the cells. S. acidocaldarius cells tend to stick together even after cell

division. Measurements were therefore taken as the cell begins to "pinch", until the diameter stops

decreasing. For every cell, the midcell diameter is measured over the "cell division" frames. The

diameter is measured three times, and an average is calculated. A standard deviation of the three

measurements provides a measure of uncertainty of the measurements.

2.2.4 Fitting Power Curves to Data

The purpose of measuring a large sample of cells is to take an average of the measurements for

more accurate results. Initially, the average of the absolute measurements were going to be taken

of every cell. However, cells have varying division times, and as discussed previously, there is

uncertainty regarding when division truly starts and finishes. As such, there is no way to "line up"

the measurements according to time for averaging. One solution was to scale, the axis to percentages

rather than use absolute values, such that all the data points start at 0% and end at 100%. However,

this significantly skewed the measurements, and the results were deemed invalid.

Instead, midcell diameter vs time measurements for each cell are fitted with a power curve of form

Eq. 3 where the power coefficients quantify the shape and rate of division. Advantageously, averages

can still be taken over all the cells measured without distorting the results.

d(t) = c× tα + b (3)

In Eq. 3, α quantifies the "shape" of the graph, meaning how the rate of division changes over time.

α = 1 represents a linear graph meaning that the cell divides at a constant rate, which is what is

expected from previous measurements. 0 < α < 1 means that the diameter decreases faster initially

and slower at later stages and α > 1 has the opposite relation. b is the intercept of the graph, which

is approximately the diameter of the undivided cell measured in µm. c is the average decrease in
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midcell diameter per minute measured in µ min−1. c is, therefore, the average division rate of the

cell.

Fig. 6 shows how the shape of the graph depends on α.
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Figure 6: Power curve plots of y = −0.03xα + 1.5 for different values of α, indicating how different

α values affect the shape of the curve.

2.3 Results and Analysis

54 S. acidocaldarius cells were measured in total. The cell measurements were divided into two

groups according to their phenotypes, 32 WT and 22 MW001 cells. The details of the time-lapse

movies from which these cells are taken are summarised in Table 1.

Table 1: The properties of the time-lapse movies from which the measured S.acidocaldarius cells

were taken.

Phenotype
No.

Measured
Immobilised?

Membrane

Dye?

DNA

dye?

Time Interval Between

Image Frames /min

Duration

/min

Doubling Time

/h

WT 32 Yes Yes Yes 2 128 3

MW001 22 Yes Yes No 1 106 5

Power curves were plotted for the midcell diameter measurements for every cell in Fig. 7. This

project is only interested in the shape and rate of division, α and c. Fig. 7 a-b) shows that the

average shape of the midcell diameter against time graphs are quantified by α = 0.91 ± 0.25 and

α = 0.90±0.23 for WT and MW001 cells respectively. These values suggest that the rate of decrease
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b) Distribution of Coe�cient α

c) Distribution of  Coe�cient c

a) Power Curve Fits of Midcell Diameter vs Time

Figure 7: (Left) 32 WT cells. (Right) 22 MW001 cells. a) Purple line indicates the power curve

plotted from averaged power coefficients of all the measured cells. b-c) The mean and standard

deviation of fitted power coefficients are displayed alongside their distributions.

is close to linear (α = 1) but generally the cells divide faster to begin before slowing down near the

end of the division (α < 1).

Alternatively, this α < 1 relation could be attributed to the fact that it is not possible to know, at

the time of writing, at what point the cells stop dividing. As the cells stick together even after cell
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division, the midcell diameter plateaus instead of reaching zero. Human judgement is required to

determine when the cell appears to have reached a plateau, and measurements are likely taken even

after division stops. As a result, the rate of division would appear to slow down at the end of the

measurements resulting in α < 1.

Fig. 7 b-c) shows the distribution of the fitted coefficients α and c of all 54 cells, where the left

column shows 32 WT cells, and the right column shows the 22 MW001.

The standard deviation of α values in Fig. 7b) is quite large in comparison to the mean meaning that

there is a large variation between the measurements. The histograms in Fig. 7 b) show approximate

bell curves centred on the mean values of α, which further validates the mean values. Similarly, Fig.

7 c) show the c values are distributed like a bell curve over the mean, c = −0.05 ± 0.02 µmmin−1

and −0.07 ± 0.03 µm min−1 for WT and MW001 respectively. The presence of DNA dye and the

immobilisation of the cells slow the rate of division. The WT cells measured have both the DNA dye

and immobilisation. In contrast, the MW001 cells are only immobilised, which may explain why,

on average, the MW001 cells have a faster rate of division. The power coefficient c, has been used

to quantify the rate of division; however, it is only the average rate. If the rate during division, c

would not be a good measure. c is a measure of division rate most appropriately when division is

linear.

These results have multiple areas of uncertainty, including uncertainty in when the cells stop dividing,

measurement error and the goodness-of-fit of the power curves. These areas of uncertainty compound

when taking the final average of the power curves; therefore, it is important to try to minimise the

error in each step. As yet, there is no method in determining when cells start and stop dividing.

For the FWHM method of measuring the midcell diameter of the cells, the intensity profile of the

line of measurement must be a Gaussian (or two Gaussians). For accurate measurements, fitted

Gaussians needs to be as well defined as possible; however, due to the tendency of S. acidocaldarius

cells to stick together, the intensity associated with other cells can interfere with the clarity of the

Gaussian, as shown in Fig. 8. Some cells included in the average had a large measurement error

compared to others. Although having fewer measurements in an average is generally less accurate,

the measurements with large associated uncertainties decrease the overall validity of the average

measurement. As such, the cells with the lowest measurement error can be averaged again for more

valid results.

Similarly, it is important that the power curves represent the raw data as accurately as possible. In

the 54 cells measured, there is variation in how well the power curves fit the data. For more valid

results, those ill-fitting curves should also be removed. Goodness-of-fit tests are statistical measures

of how well-fitted curves fit raw data. R2 is a simple goodness-of-fit test and is calculated using Eq.

4. R2 varies from 0 to 1, where 1 indicates a perfect fit. In this project, power curves with R-squared

values less than 0.9 were rejected. 0.9 is the R2 value at which the standard deviation of the fitted

curve’s errors is approximately 1/3 the size of the standard deviation of the dependent variable.
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a) b)

Figure 8: a) Cells that are unsuitable for measurement, using the method outlined in this project,

are those in close proximity to neighbouring cells. b) Measuring the midcell diameter requires a plot

of the intensity of the midcell axis of the cell and fitting a Gaussian curve. If there are other cells

nearby, it affects the shape of the Gaussian and the FWHM calculated is inaccurate.

R2 =

∑
i(yi − ȳ)2∑
i(fi − ȳ)2

(4)

Where yi are the raw data points, ȳ is the mean raw value, and fi are the fitted values.

11 WT and 10 MW001 cells were left after eliminating those cells with significant measurement

uncertainty and R-squared values less than 0.9. Once again, the midcell diameter of these cells was

plotted over division time, fitted with power curves, and the average was plotted, the results are

shown in Fig. 9.

The average coefficients plotted in Fig. 9 were calculated to be α = 0.96 ± 0.13 and c = −0.04 ±
0.02 µmmin−1 for WT cells and α = 1.01± 0.16 and c = −0.05± 0.02 µmmin−1.

The α values are close to 1, suggesting that the cells divide linearly as expected from previous

work. The standard deviation of the fitted coefficients are smaller in these new plots suggesting

that these averages are more reliable than the previous values. Although these results appear to

validate previous observations, the number of cells measured is relatively small. More cells need to

be measured to make a valid conclusion.

The main area of uncertainty in these measurements stems from not knowing when cell division

starts and stops. Furthermore, the reduced rate of cell division due to cell immobilisation and DNA

dye means that these results may not reflect S. acidocaldarius cells in nature.

The significance of α ∼ 1, is that ESCRT-III and CdvB are likely to exert a constant force when

cutting cell membranes. Researchers can, therefore focus on physical mechanisms that exert constant

force to explain the unknown mechanics behind protein filament mediated membrane cutting.

Additionally, images show that the cells do not always divide symmetrically, as shown in Fig. 10.
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b) Distribution of Coe�cient α

c) Distribution of  Coe�cient c

a) Power Curve Fits of Midcell Diameter vs Time

Figure 9: Selected midcell diameter measurements from Fig. 7 that have the lowest associated

uncertainty. (Left) 11 WT. (Right) 10 MW001 cells

This suggests that while division protein filaments exert a constant force, it may not be constant in

all orientations.
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a)

b)

Figure 10: Selection of cells displaying a) symmetric and b) asymmetric division. Red are WT

and grey are MW001 cells.

2.4 Further Work

The validity of the coefficient values α and c calculated from these cell measurements are dependent

on the certainty of when cells start and stop dividing. One way to reduce this uncertainty is to

measure the cell across all image frames such as in Fig. 11.

Fig. 11 shows a plateau at the beginning, because the diameter of the cell stays roughly spherical

when it is not dividing. It also shows a plateau at the end as a result of cells sticking together

after division. The division frames are, therefore, likely to be the highlighted area between the two

plateaus. In this method, the need for human judgement is reduced.

In this project, machine learning algorithms were used to detect and crop out cells for measurement

automatically. The capabilities of these algorithms can always be expanded. Currently, algorithms

can be used to find the start and end of division by tracking the topology of the cell as it splits into

two.

This project’s main time-consuming aspects involve: hand-drawing lines in ImageJ across the midcell

of the dividing cell, exporting the intensity data then fitting one or two Gaussian curves which

requires minor adjustments to Python code. Each of these steps can be automated, and work has

already been started to develop the algorithms to carry out these measurements.

More time-lapse movies are continually being created using the "Sulfoscope". 17 WT untampered

cells, i.e. without immobilisation or DNA dye, were measured in the late stages of this project,

and as such, the results are not finalised. The preliminary midcell diameter vs time results of these

cells are displayed in Appendix A. These cells are more akin to those found in nature than the cells

measured in this project.
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Frame

Figure 11: The midcell diameter of a WT cell plotted every two minutes for 64 image frames. It

is estimated that cell division occurs in the highlighted region.

3 Development of Coarse-Grained Cell Division Model

3.1 Background

3.1.1 Computational Modelling in Biology

Computational modelling can be used to investigate the underlying dynamics of biological systems

at a molecular level, including the processes within a cell. The dynamics of many-body systems, even

with the applications of simple Newtonian dynamics, are unsolvable. Before computer simulations,

theories were used to predict the properties of the molecules. Computer modelling experiments

have the advantage over traditional experiments by providing exact numerical solutions.25 Another

distinct advantage of computational experimentation is that the parameters of an experiment, such

as temperature or pressure, are unlimited by cost or practicality.26 The accuracy and validity of

the results, therefore, only depend on how a simulation is programmed. Despite the success of

computational experiments, traditional experiments still play a vital role in validating results from

the simulations and, by extension, improving the simulations themselves.

There are two main types of simulations used in biological systems: Monte Carlo (MC) and molecular

dynamics (MD).28

MC methods are computational algorithms that use random sampling to obtain numerical results
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and has applications ranging from computational biology to finance. MC methods rely on the law

of large numbers; by randomly sampling multiple times. Then, the expected value of a measured

variable can be approximated by taking the mean of a variable from the results of multiple random

samples. When the probability distribution of a variable is known, Markov chain Monte Carlo

(MCMC) methods can be used. MCMC is used in computational biology modelling, where the

probability that the system will transition into each successive random state is calculated dependent

on the previous event.27

Molecular dynamics (MD) has the advantage of providing a time-evolved model of the system, which

is more suitable for cell division.28

3.1.2 Molecular Dynamics

Molecular dynamics (MD) simulations have been used since the 1970s to model the behaviour of

molecules in different chemical, biological or physical systems. MD studies the behaviour of a many-

particle system by computing its time evolution numerically and averaging its observable quantities

over a long period.28 This process is outlined by the flowchart in Fig. 12. Advances in computing

have allowed simulation to increase in scale from a few hundred molecules to potentially millions.

Initialise positions, velocities and 
potentials between particles for all 

particles, r ,v(r) ,V(r) for t = 0.

Compute forces on atoms,
Fi = ∇V(ri)

Update r  and v(r) according to 
equations of motions

Increment timestep , t = t + dtRe
pe

at
 fo

r N
 ti

m
es

te
ps

Perform measurement on
 variables of interest

Figure 12: Molecular dynamics simulations as a simplified schematic.

MD simulations in this project are based on Langevin dynamics. Langevin dynamics recreates ran-

dom particle movements that are representative of biological systems without the need to explicitly

model a solvent, i.e. individual water molecules.29 In Langevin dynamics simulations, the Langevin
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equation is solved for each particle at each timestep of a given simulation, given by Eq. 5.

γ
dx

dt
= −dU

dx
+ ξ(t) (5)

Where x represents the dynamical variables of the system, γ is the friction constant, U is the

potential energy between particles and ξ(t) represents the thermal noise from the environment that

recreates the effect of molecules in a solvent. The thermal noise has an average force of zero so that

it does not affect the system with bias in a particular direction.

3.1.3 Volume Exclusion

Eq. 6 gives the classic 12-6 LJ potential and is represented by the graph Fig. 13. It is a simple

model that describes the interaction between two uncharged atoms as a function of distance between

the two. The LJ potential is attractive at most distances but repulsive at small distances because

the Pauli exclusion principle which prevents matter from overlapping.

VLJ = 4ε[(
σ

r
)12 − (

σ

r
)6] = ε[(

rmin
r

)12 − 2(
rmin
r

)6] (6)

Where ε is the measure of how strongly two particles interact occurring at r = rmin and σ is

the distance at which the potential between two particles is zero. The distances are related by

rmin = 2
1
6
σ ≈ 1.122. The tail of the LJ potential tends to zero such that the potential between

two particles at infinity is equal to zero, as shown in Fig. 13a). It is computationally inefficient to

calculate potentials at large distances as this would require calculating the potentials between every

particle in the system (within the threshold of infinity) which would scale to 2N . Therefore, the LJ

potential can be truncated at a distance rcut, which is the distance at which the potential is 1
60 of

its minimum value. After truncation, the LJ potential needs to be shifted upwards such that the

truncated potential equals 0 at rcut to avoid discontinuity in the potential as shown in Fig. 13b).

The truncated LJ potential is given by Eq. 7.

VLJtrunc(r) =

{
VLJ(r)− VLJ(rcut) r 6 rcut

0 r > rcut
(7)

A common interaction used in MD simulations is a special case of the truncated LJ potential where

rcut = rmin called volume exclusion.30 In MD, particles are defined by their positions and interactions

without explicit radii. Volume exclusion provides a way of defining a radius for the particles. Volume

exclusion does not model any attraction between particles, only repulsion if the particles are less

than rmin. As a result, particles behave like hard spheres with radii equal to rmin
2 .31

The particles in the simulations are modelled as hard-spheres with radii, r = rmin
2 ≈ 1.122σ

2 because
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Figure 13: a) A graph of the Lennard-Jones potential that is defined by Eq. 6. b) A graph

illustrating the volume exclusion potential, Eq. 8. Volume exlusions is the Lennard-Jones potential

truncated at rmin and shifted upwards to prevent any discontinuity.

rmin is where interactions equal zero.

VLJ =

{
4ε(( σ

rlj
)12 − ( σ

rlj
)6) , rij ≤ rcut = rmin

0 , rcut = rmin > rij
(8)

3.1.4 Coarse-grained Modelling

Since the 1980s, simulations have been developed to study "all-atom" models for biological systems.32

Modelling every particle is highly computationally demanding and places limitations on length and

timescales. As a result, coarse-grained models were developed to reduce the number of particles

required to recreate a complex system.33 The simplicity of coarse-grained models increases efficiency

at the expense of, often unnecessary, molecular detail.

3.1.5 Membrane Model

Biological membranes consist of lipid molecules that self-assemble into either a mono- or a bilayer

which align according to hydrophobic interactions. Yuan et al.34 developed a coarse-grained model of

the fluid membrane that faithfully reproduces the action of fluid membranes. This model builds upon

previous work by Drouffe et al.35 by improving the fluidity of the model to meet the experimental

range. Like the model by Drouffe et al., the particles in the model by Yuan et al. can self-assemble

into a cell/vesicle as shown in Fig. 14. The model uses orientation-dependent pair potentials between

particles to mimic the action of lipids in water. The pair potential was based on the Lennard-Jones

(LJ) potential.34
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Figure 14: A diagram showing how coarse-grained membrane particles can self-assemble into cell

membranes. (Figure by Yuan et al.34)

3.1.6 ESCRT-III Filament Model

Harker-Kirschneck et al.36 created a coarse-grained model of the ESCRT-III filament. They success-

fully showed how changes in its geometry can drive membrane abscission leading to cargo budding.

The proteins of the constricting filament are coarse-grained in this model into units of three particles

connected via nine harmonic bonds given by Eq. 9. The connected triplet units form a triple-stranded

filament, as shown in Fig. 15 a).

Ebond = Kbond · (r − r0)2 (9)

Where Kbond is the "bond strength", or stiffness, constant, r is the distance between two subunits

and r0 is the resting bond distance. Kbond remained the same for each subunit.37 These strong

harmonic bonds allow for large amounts of tension on the filament without snapping. The rigidity

of the filament and therefore, its geometry depends on the bond length between neighbouring triplet

units which depends on bond strength, Kbond.

The top particles of each triplet unit do not attract or repel the membrane; instead, it interacts via

volume-exclusion. The two bottom particles in each triplet subunit attracted to the membrane via

the attractive region of the LJ potential Eq. 6.

When in a relaxed state, the filament forms a ring of radius R because the bonds between the

subunits have the same rest length. Filaments longer than R are forced to become spirals because

filaments are prevented from overlapping due to volume exclusion. Filament bonds must stretch to

form spirals causing potential energy to store between the bonds. This stored energy is analogous

to elastic potential energy stored in a spring shown by Eq. 9. The release of the stored energy can

drive membrane deformation.
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3.1.7 Archaeal Cell Division Model

The previously discussed membrane and ESCRT-III filament model were implemented together by

Risa et al. to form the archaeal cell division model. The model was based on previous experimental

observations of cell division in S. acidocaldarius.3 The ESCRT-III filament model was used to model

CdvB and CdvB1/B2, the protein complexes division proteins found in S. acidocaldarius. CdvB

and CdvB1/B2 form the "archaeal ESCRT-III" so they behave in the same way. Images were taken

of fluorescently labelled CdvB and CdvB1/B2 in S. acidocaldarius using SRRF super-resolution

microscopy. It showed that cell division occurs in the following three-step process illustrated in Fig.

15b):

a)

b)

Figure 15: a) Computationally modelled archaeal cell division filament. The filament is coarse-

grained and formed of triplet units joined by nine harmonic bonds. b) Initially, the CdvB1/2 filament

(green) polymerises onto the CdvB scaffold (red) and is stretched to the radius of the cell R0, when

the filament relaxes it constricts to its preferred radius R. This constriction drives cell division in a

simple cell. (Figure by Risa et al.)3

First, a CdvB ring of fixed diameter R0 is formed in the middle of the dividing cells and acts

as a scaffold. Second, CdvB1/B2 to assemble onto the CdvB. CdvB1/B2 has a smaller preferred

curvature, R, so the bonds within must stretch to fit the radius of CdvB. Third, when the CdvB

template is taken away, the potential energy stored in CdvB1/B2 polymer is released. This drives

constriction of the ring towards their relaxed radius R, bringing along the membrane as it contracts.

The paper makes the conclusion that CdvB inhibits cell division and that proteasome-mediated

degradation of it triggers cell division in the first step.3

Only the action of CdvB1/B2 is simulated because CdvB is not present before cell division. Initially,

the simulated CdvB1/B2 filaments are stretched into a helix around the circumference of the cell, R0,

imitating the real CdvB1/B2 attaching to the CdvB scaffold. Then, the constriction of the ring is

modelled by shortening of the bonds between the triplet units to its preferred curvature of R, which
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releases the stored harmonic energy from being stretched. The shortening of the bonds occurred

according to one of two protocols: instantaneous or random. Instantaneous is when all the bonds

shorten at once, and random is when random bonds shorten in successive timesteps. Experiments

showed that the CdvB scaffold quickly disintegrates, which favours the instantaneous protocol.

Simulations showed that the constriction of the helix alone could not cause membrane scission.

After changing the model, the filaments were made to disassemble at a specific rate. Cell division

successfully occurs in this model depends on the curvature of the constricting filament given by
R
R0

and the rate of disassembly of the filament. When R
R0

is too small, the energy released from

the constricting filament is not enough to drive cell division. Conversely, when R
R0

is too large, the

filament constriction energy overcomes the attraction to the membrane and detaches. If the rate of

disassembly is too fast, then the filament does not have time to complete cell division. In contrast,

if the rate of disassembly is too slow, then the filament forms a bottleneck which delays division.

Experimental observations revealed that a diffuse CdvB1 signal was shown to accumulate as the

division ring contracts and the local intensities of CdvB1/B2 increased overtime. Both observations

agree with the model suggesting that CdvB1/B2 disassembles overtime. This result delineates how

cross-referencing experimental evidence with simulation data can lead to new discoveries.3

3.2 Methodology

This project uses the cell division model by Risa et al. as a basis for further simulation tests.

The original simulation consisted of only a membrane and a constricting filament that drives cell

division. The model does not account for the macromolecules that constitute 20-30% of cell inte-

riors, or cytoplasm.38 The purpose of this project is to investigate the effect of "macromolecular

overcrowding" on the dynamics of cell division, by adding cytoplasm-like particles to the centre of

the simulated cell. Simulation input scripts were written using Python for LAMMPS (Large-scale

Atomic/Molecular Massively Parallel Simulator) molecular dynamics software following documen-

tation.39 Simulations in this project use "LJ units" which are dimensionless units defined based on

the LJ potential often used in MD for convenience, choosing length σ, mass m, time τ and energy

ε.40 Furthermore, Boltzmann constant, kB = 1 and temperature is related to energy by ε = kBT .

For a simulation to run, input scripts must include the initial positions and velocities of each particle,

the interactions between particles and the duration (number of timesteps) of each simulation stage.

The size of each timestep needs to be large enough to reduce computation time but also not so large

that the particles move too much between each timestep. Large timesteps can cause the particle

positions to overlap and cause an error in the simulation. Each timestep is equal to 0.01 τ . The

positions of every particle are only saved into the output file every 2 · 104 τ to reduce file size while

retaining enough significant information. Therefore, output files contain only 92 timesteps rather

than 1.84 · 106 τ .

The cell division model consists of three components: membrane, constricting filament and cyto-
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plasm.

Cell Membrane

This project uses the same simulated cell membrane used by Risa et al., who created the simulated

cell following method by Yuan et al. .34 They initialised 48,002 membrane particles that self-

assembled into a roughly spherical cell of radius, R0 = 52.46 σ. However, some membranes did

not self-assemble and were left free-floating in the cell. Adding particles within the cell would

overlap with existing particles resulting in simulation failure as repulsive energies would skyrocket.

Consequently, the first step in initialising cytoplasm particles was to remove the stray membrane

particles that did not form the cell. The magnitude was calculated for every membrane particle’s

coordinates—those less than or greater than the radius of the cell were removed, shown in Fig. 16a).

The simulated cell is not a perfect sphere and not exactly centred on the origin of the simulation

box. Therefore, the membranes particles that were kept were within a threshold of the radius of the

cell between 51 - 62 σ. As a result, 48002 membrane particles were reduced to 47920.

Filament Protein

The filament protein was initialised following method by Risa et al. The constricting force generated

by the filament is dependent on the harmonic bond between the protein particles and the curvature

R/R0 of the overall filament. In these simulations, R/R0 = 0.275.

Another factor that affects the success of division is the disassembly timestep of the protein filament.

If the filament disassembles too quickly, then the filament will not have enough time to drive cell

division. If the disassembly is too slow, the filament will delay the time taken for cell division. In

these simulations, the disassembly timestep is set equal to 4000.

Cytoplasm Particles

Cells are estimated to be filled with 20-30% biological molecules. However, it was desired that the

packing of cytoplasm particles in the simulated cell could be varied to investigate its effect at different

packing fractions. For maximum flexibility of the simulation, the cell must be packed maximally

such that the packing fraction can be varied by reducing from the maximum. Face-centred cubic

and hexagonal close-packed represent the densest possible packing of spheres. For this model, the

hexagonal close packing arrangement was used where the x-, y-, z- coordinates of the particle centres

are given by Eq. 10. 
2i+ [(j + k)%2)]
√

3[j + 1
3(k%2)]

2
√
6

3 k

 r (10)
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Where i, j, k are indices starting from 0.

Spheres can be compactly packed into lattices up to 71%, however it is difficult to pack spheres

into a larger sphere. The following method was used to try to pack a sphere with smaller spheres

maximally. First, a large lattice of particles positions were calculated using hexagonal packing, Fig.

16 b). Then, those with position magnitudes greater than the radius of the cell are deleted, Fig. 16

c-d). When a desired packing fraction is entered into the Python code, the number of cytoplasm

a) b) c) d)

Figure 16: How cytoplasm particles were initialised in the cell model. a) Membrane particles self-

assemble into a cell of radius, R0. Some particles do not form part of the cell; these stray particles

are removed to make room for the cytoplasm particles. b) Cytoplasm particles are initialised into a

lattice larger R0 in a hexagonal close packing arrangement. c) Cytoplasm particles that lie outside

of the cell membrane are removed. d) The result is a maximally packed cell. The packing of the cell

can be reduced by initialising fewer cytoplasm particles in the same arrangement.

particles required for the volume is calculated dependent on the radius of the cytoplasm particles.

Then, only the required number of particles for the particular packing fraction are initialised.

Particles in these simulations are point particles but are given an effective radius dependent on their

interactions with other particles through volume exclusion. Volume exclusion potential is dependent

on the strength (ε) and the distance at which the potential is equal to 0 (r = rmin = 2
1
6
σ). Therefore,

the effective radius of a particle is r = rmin
2 . In these simulations, the radii of all the particles are

kept the same apart from the cytoplasm. The cytoplasm radius can be parametrised as a function

of σcyto.

Each simulation consists of five stages illustrated in Fig. 17:

1. Relax - In this stage, the harmonic bonds between each filament protein are relaxed while the

membrane and cytoplasm particles equilibrate. In all simulations, this occurs for 1 · 104 τ .

2. Initial - The harmonic bonds between the protein particles in each triplet unit is initialised

according to bond strength Kbond = 600. The filament also becomes a rigid body, meaning

that the total force and torque on the body is the sum of forces and torques on the constituent

particle. Therefore the filament moves as a single entity. The whole system then equilibrates

for 2 · 105 τ .
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3. Bonds transform - The bonds between the protein molecules are "turned off". As a result, the

energy stored from the stretched bonds is released, causing a constricting force that drives cell

division as the filament remains adsorbed to the membrane surface. The bonds can be released

instantaneously or randomly. Instantaneous constriction is when all the bonds are released at

once; this represents the fastest protocol. Random constriction is when the bonds that are

released at a given time are randomly chosen. The bonds are released in one timestep for

instantaneous transformation and, for random, the 18 bonds are released every one timestep

for a total of 140 τ .

4. Bonds disassemble - the filament starts to disassemble. As discussed previously, cell division

simulations can only reproduce cell division successfully when the filament disassembles be-

cause otherwise a bottleneck is formed. All the filament proteins (3×1440) are disassembled

every 6000 τ lasting 1.44 · 105 τ . A bottleneck can be seen in Fig. 17 d) which diminishes over

time due to disassembly.

5. Final - finally, regardless if a division is successful, the system is equilibrated for 2 · 105 τ .

a)  Relax b) Initial c) Bonds 
Transform

d) Bonds 
Disassembly e) Final

Figure 17: The five stages of the cell division simulations.

3.2.1 Simulation Procedure

An appropriate range of packing fractions and σcyto were chosen for simulation, packing = 10, 15...40%

and σcyto = 5, 6, 7, 8. This range of packing fractions were chosen because it is estimated that cyto-

plasm is 20-30% full of proteins. At these packing fractions, σcyto values less than 5 generated too

many particles (up to 105) which prevented any significant filament constriction. This vast number
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of particles also increased the computation time required for a simulation. When the size of the

cytoplasm particles are the same as the size of the membrane particles, the cell can even explode,

as shown in Fig. 18 because the small cytoplasm particle size allows them to leak through the gaps

in the membrane. Conversely, for σcyto values greater than 8, the number of cytoplasm particles

generated were too small to affect the simulation significantly.

Figure 18: Simulation of a cell where σcyto = 1 and packing fraction = 8.5%. The cytoplasm

particles leak through the gaps in the membrane.

These simulations contain up to 104 particles, for more concise input scripts the particles can be

separated into different groups. The interactions between particles can be described as the inter-

actions between groups rather than individual particles, i.e. 47920 particles are in the membrane

group. A summary of interactions between the particle groups are given by Table. 2.

Table 2: Interactions between different particle groups in the cell division simulations.

Particle

Group 1

Particle

Group 2
Interaction Variable Values

σ ε(kBT ) rcut(σ) rmin(σ) θ(deg) µ ζ

Membrane Membrane Orientation-dependent 4-2 LJ potential34 1 4.34 2.6 1.122 0 3 4

Membrane Upper Protein Volume Exclusion (Eq. 8) 1 2 rmin 1.122 - - -

Membrane Lower 2 Proteins Attractive LJ (Eq. 6) 1 4 rmin 1.122 - - -

Proteins Proteins Volume Exclusion (Eq.8) 1 2 rmin 1.122 - - -

Cytoplasm Cytoplasm Volume Exclusion (Eq.8) 5, 6, 7, 8 2 rmin 1.122 - - -

Cytoplasm Membrane & Proteins Volume Exclusion (Eq.8) 4 2 rmin 1.122 - - -

Parallel computers provides high-performance computing which is suitable for simulations of 106

molecules. LAMMPS simulations were run on UCL’s Myriad research parallel computing cluster.

The output files are XYZ files that contain the positions of every particle for every outputted time

frame (every 2 · 4 τ . The output files can be viewed in OVITO visualisation software. The system

in the simulation is subject to Langevin dynamics, as discussed previously, Eq. 5 and is represented

as a microcanonical ensemble, a statistical ensemble that is used to represent the possible states of
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a system that has a fixed number of particles, volume and total energy.41

Each simulation configuration was run 10 times and for both constriction protocols: instantaneous

and random. The random seed state of the simulations were changed for each of the ten trials.

Changing the seed, changes the pseudorandom processes in the simulation where cell division may

be successful for some seed values but not others. Simulations were run without the presence of

cytoplasm also for comparison.

3.2.2 Simulation Measurements

The midcell diameter of the simulated cell was calculated for every timestep using code provided by

the Šarić group, which was adapted to accommodate the presence of cytoplasm particles. The code

reads the positions of every particle at each timestep. Then, it takes a thin 3D rectangular cross-

section of the centre of the simulation box represented by orange box in Fig. 19. The coordinates of

the particles within the cross-section are fitted to a circle using the Taubin method for circle fitting.42

The recorded diameter is the diameter of the fitted circle, Fig. 19 (top). When the simulated cell

finishes division and there are two cells present with a space between them, the calculated diameter

is not 0σ but rather ∼ 10σ. The reason for this is because the gap between the two cells may not be

exactly in the centre of the simulation box. Also, the 3D rectangular cross-section has a non-zero

width so particles from the two daughter cells may still enter the cross-section, as shown in Fig. 19

(bottom).

A total of 500 simulations were run in this project. Code was written to automate the process of

checking which simulation resulted in successful cell division. The code also plotted the average

midcell diameter vs time over ten seed states for each parameter set. The measurements of midcell

diameter never reaches zero but instead plateaus at a minimum value. As such, successful cell

division was defined as when the midcell diameter reached below the threshold of 20 σ, where the

initial diameter of the cell is always measured to be 106.52 σ.

3.3 Results and Analysis

Simulations were run for ten different seeds at packing fractions 10-40%, σcyto = 5, 6, 7, 8 and for

the two different bond transform protocols. The number of successful cell division simulations out

of ten simulations was plotted as a probability in the form of a phase diagram for each configuration

in Fig. 20. The number of cytoplasm particles in each simulation is also included in the diagram.

Fig. 20 shows that the greater the number of cytoplasm particle, the less likely that cell division is

successful. This result is to be expected as the presence of particles within the simulated cell causes

internal pressure that acts against the constricting force of the filament protein that causes cell

division. Fig. 20 shows that there are more cytoplasm particles when packing fraction is higher or

when σcyto is smaller. There is a greater number of cytoplasm particles for a given packing fraction
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Figure 19: Diagram to show how the diameter is calculated for a simulated cell. The orange

box takes a cross section of the membrane particles and then a circle is fitted to the membrane

coordinates. (Bottom) When cell division is finalised, the diameter is not measured as zero because

the membrane particles enter the orange box.

a) b)

Figure 20: Phase diagrams showing the probability of successful cell division dependent on two

parameters: the packing of the cell with cytoplasm particles and the radii of the cytoplasm particles

(σcyto. The probability is given by the number of successful divisions out of ten trials. The phase

diagrams are plotted for the two filament constriction protocols: instantaneous and random. The

numbers in each box represent the number of cytoplasm particles in the simulated cell.
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at smaller σcyto because more particles are required to fill the same amount of volume when the

particles are smaller. The results are dependent on the number of cytoplasm particles in the system

as opposed to the packing fraction or σcyto value explicitly. To further test this model, the number

of cytoplasm particles could be used as a variable and choose another variable to investigate, such

as the interaction strengths between different particle groups.

Unusually, the instantaneous diagram shows that division can happen at a higher packing fraction

even when the division is unsuccessful at a lower packing fraction for a given σcyto value. For example,

at σcyto = 7, cell division is successful at packing = 20% but not at 15% even though there is less

cytoplasm particles to interfere with the division. Inspection of the individual simulations show that

in these simulations, the filament detaches entirely from the membrane, rather than being "pushed

out" by the presence of cytoplasm particles. This result is due to the filament having too much

stored energy and overcoming the membrane attraction when that energy is released. Although it

is unclear why some filaments detach and others do not given that they all initialised with the same

parameters.

Fig. 21 delineates the two ways division can fail. Fig. 21 a) shows cell division failing due to the

internal pressure of the cytoplasm particles pushing against the constricting filament; this usually

takes a longer time. The greater the number of particles, the shorter amount of time it takes. Fig.

21 b) shows cell division failing due to the constricting filament detaching from the membrane.

Detachment occurs as soon as the filament constricts.

a)

b)

20 simulation steps
detaches immediately

50 simulation steps

Figure 21: Two different types of cell division failure in the cell division simulations. a) Internal

cytoplasm causes outward pressure against the filament and prevents division. b) Filament has too

much energy and detaches from the membrane when constriction begins.

The instantaneous graph is polarised in that if cell division is successful or unsuccessful with certainty,

i.e. division probability of 0 or 1. In contrast, the randomised protocol has more considerable
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variation in division probability. Evolution would likely "choose" the bond transform protocol

that would yield the most successful cell division probability. Therefore, it may be more likely that

constricting filaments disassemble instantaneously. This argument agrees with previous observations

as division is known to start quickly due to the fast degradation of the CdvB scaffold. However, this

can only be verified by experimental observation which is currently not possible.

The midcell diameter was calculated over simulation time for each configuration where a mean was

taken of the ten seeds. Fig. 22 is a graph of midcell diameter over time, averaged for the simulations

representing randomised constriction and σcyto = 7 for all packing fractions. The results of σcyto = 7

for randomised constriction is discussed because it is the configuration with the greatest amount of

variation in cell division success.
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Figure 22: A diagram to show how the midcell diameter against time is dependent on the cytoplasm

packing of the cell where all the particles are the same radius, σcyto = 7. Only 55 out of 92 total

output timesteps are displayed because the remaining timesteps are just for equilibration. Each

timestep in the graph is 2 · 104 τ .

Although, in these simulations, positions are recalculated every 0.01 τ , the results are only outputted

every 2 · 104 τ . This is to reduce output file size. Hence, each timestep referred to in the following

section is 2 · 104 τ , and is illustrated by the x-axis of Fig 22.

As discussed previously, the simulation is initiated with the relaxed filament. The filament is then

stretched and adsorbed to the membrane, which causes the cell membrane diameter to decrease
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slightly, which can be seen in timestep 0 in Fig. 22. The system then equilibrates for 10 timesteps;

thus, the graph plateaus at 106 σ.

Then, Fig. 22 shows that there is a sharp decrease in midcell diameter between 10-13 timesteps and

that it is identical for all the simulations regardless of the number of cytoplasm particles. This is

because, at the beginning, there is effectively no cytoplasm in the way of the constricting filament.

Then, further constriction causes the volume of the cell to decrease so that the cytoplasm particles

occupy a greater volume fraction and produces a pressure that pushes back against the filament. Fig.

22 shows that none of the simulations exhibit a linear rate of midcell diameter decrease throughout

the simulation, so there is still a discrepancy between experimental and simulation measurements

such as that in Fig. 2. However, if you discount the initial rapid decrease, the graph appears to be

linear during the majority of the division between ∼ 13− 30 timesteps. At timesteps > 30, there is

a plateau in diameter or an increase dependent on if cell division is successful. The gradual decrease

before the plateau is due to the filament creating a bottleneck and slowly disassembling. The plateau

occurs at midcell diameter ∼ 10 σ rather than diameter = 0 σ despite the two cells being separate

(see Fig. 19). When cell division fails, the constricting filament no longer exerts a force on the cell

membrane. Therefore, the cell gradually returns to its spherical shape, which is why the diameter

increases again over time.

Fig. 22 demonstrates how the percentage packing of the cell, or the number of cytoplasm particles,

affects the midcell diameter over time. Division occurs when the diameter reaches approximately

20 σ. At higher packing fractions, the cell is prevented from decreasing to 20 σ, so division fails.

Also, the greater the packing of the cell, the slower the rate of decrease, as can be seen from the

shallower gradient of the curves at higher packing fractions. The orange line represents a cell without

cytoplasm particles, and it has the steepest gradient and divides the fastest.

These results may explain why cells are filled 20-30% with macromolecules. It is possible that if cells

were filled more, cell division would not be able to occur or would be too slow and would, therefore,

require more energy.

3.4 Further Work

In the modified cell division model, cell division fails when pressure from the interacting cytoplasm

particles pushes constricting filament and prevents constriction. The cytoplasm of real cells that

start to divide only to fail and return to its original shape should be investigated to see if they

contain an above-average density of molecules.

The dividing cells in these simulations divide symmetrically, however, as discussed in Section 2.3,

some S. acidocaldarius cells divide asymmetrically. By changing different simulation parameters,

more testing can be conducted to see under what regime asymmetric division may be successful.

Arguably, for the model to replicate experimental results, it must be able to divide symmetrically

and asymmetrically.
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Multiple configurations of multiple factors lead to successful simulated cell division. As such, there is

no way of knowing which parameters are representative of a real dividing cell. Moreover, it is difficult

to find new information on the dynamics of a cell using simulations if the simulations are recreating

experimental observations as the programmer of the simulations may become biased. One way to

remove this bias is to use evolutionary computation. Evolutionary computation describes the use of

optimisation algorithms to reproduce natural selection. These optimisation algorithm has already

been previously used in conjunction with MD software to "evolve" ligand-covered nanoparticles.43

It would, therefore, be possible to apply a similar method to evolve a cell division model. For a cell

division model, the optimisation algorithm would work as follows, as shown in Fig. 23.

Initialise a large number of cells 
with a range of randomised 

properties

Evaluate how perfomance of cells 
i.e. which cells are most likely to 

divide

Select a few of the best perfoming 
cells

Combine the variables of best cells 
with more randomised ones

Is the cell 
optimised?

No

Yes

END

Figure 23: A simple schematic to show how evolutionary computing can be used to find a cell

division model.

Usually, one would expect many optimised solutions found using an algorithm such as the one in

Fig. 23. However, as discussed before, the cell division machinery found in archaeons is highly

evolutionarily conserved as they are genetic homologues to cell division machinery in Eukaryotes.

As such, there are likely only a few set of variables that would optimise the cell.
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4 Conclusion

This project aimed to understand better how S. acidocaldarius cells divide and focussed on two

objectives to achieve this aim. The first objective was to measure the midcell diameter of live-cell

imaged dividing S. acidocaldarius cells over time. Then, to use these measurements to quantify

the shape and rate of division. The midcell diameter of 54 S. acidocaldarius cells were measured

using image processing software ImageJ over estimated division time. Power curves were fitted to

the measurements of the form Eq. 3 where the coefficients α and c quantified the shape and rate

of division, respectively. The coefficients of the fitted power curves were averaged over the 54 cells

where the 54 cells were split into two groups according to their phenotypes, 32 WT and 22 MW001.

On average, α = 0.91± 0.25 and c = −0.05± 0.02 µmmin−1 for WT cells and α = 0.90± 0.23 and

c = −0.07± 0.03µmmin−1 for MW001 cells. These measurements had a high degree of uncertainty

due to the low resolution of the images. The data with the highest degrees of uncertainty were

removed. This was data collected from cells that were difficult to measure due to crowding from

other cells. Also, the R2 values of each curve fit was calculated, and the fits with R2 < 0.9 were

removed. As a result, 11 WT and 10 MW001 cells were left and on average α = 0.96 ± 0.13 and

c = −0.04 ± 0.02 µm min−1 for WT cells and α = 1.01 ± 0.16 and c = −0.05 ± 0.02 µm min−1

for MW001 cells. These values have a lower associated uncertainty and are arguably more reliable

despite being taken from a smaller sample size. The results suggest that division is linear and

division rate is approximately c = −0.05 µm min−1, which is approximately a decrease in 5% of

the total diameter per minute. The largest error associated with these measurements is the division

time which had to be estimated by eye. There is currently no way of determining at what point a

cell starts and stops dividing. The measurements start when the cells visibly appear to invaginate;

however, it is likely that division starts occurring earlier. Measurements stop when the diameter

of the cell starts to plateau because the cells stick together even after cell division. Therefore, it

is likely that some measurements are taken after division stops occurring. As a result, there is a

disproportionate value of α < 1 compared to α > 1, where the rate of division appears to slow down

due to measurements entering the plateau region. Collaborators with the Baum group are developing

machine learning algorithms, which would remove the human error associated with estimating when

cells start and stop dividing. Furthermore, the measured cells had been immobilised, and the WT

cells contained DNA dye, both factors are known to affect the rate of cell division. Non-immobilised

WT cells without DNA dye were imaged by Pulschen et al. in the late stages in the project, and

the preliminary results are found in Appendix A.

The second objective was to include "cytoplasm" particles to an existing cell division model, based

on S. acidocaldarius, to see how the presence of cytoplasm particles may affect the success of the

cell division model. Prior to this project code was written for an archaeal cell model by Harker-

Kirschneck et al. that successfully recreated cell division. The model consisted of a cell membrane
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and a constricting filament. Cells are filled with 20-30% macromolecules in the cytoplasm; therefore,

the code was modified to add "cytoplasm" particles to the centre of the simulated cell. Analysis

of the modified model was carried out to show that the addition of cytoplasm in the simulated cell

affects the internal dynamics of the dividing cell. The greater the number of the particles inside the

cell, the less likely division occurs as the internal pressure pushes away the constricting filament.

Furthermore, the greater the number of cytoplasm particles, the slower the rate of division when

successful.

In conclusion, evidence was given that suggests S. acidocaldarius cells divide at a linear rate in

agreement with previous calculations. This suggests that the constricting force driving cell division

in crenarchaeons and cell cutting in eukaryotes is constant. Live-cell images show that division can

occur asymmetrically suggesting that the constriction force does not have to be uniform in every

direction. Furthermore, cell division simulations suggest that the presence of cytoplasm particles

within a cell may slow the rate of division or even prevent division at high enough concentrations.

More research needs to be conducted to understand the action of the ESCRT-III/CdvB filament and

under what conditions the filament fails to perform its role. If these conditions are known, research

can be focussed into preventing ESCRT-III from failing in its vital roles in our own animal cells.
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APPENDIX A

Fig. A1 a) shows the power curve plots of 17 WT cells that are non-immobilised and without

phototoxic DNA dye. The start and end frames measured are determined according to a machine

algorithm in contrast to human judgement as outlined in the project.

As expected, Fig. A1 c) shows that the average rate of division is much faster c = 0.09 µmmin−1

than cells discussed in Section 2.3, which had factors that reduced division rate. The preliminary

results, in Fig. A1 b), show that the average α value is 1.12±0.51, which adds further validation to

the conclusion that the cells divide at a linear rate. However, the standard deviation of the results

is substantial, as α varies between 0.12 - 2.03. These extreme values may be outliers and attributed

to an algorithm deciding when division starts and stops as opposed to human judgement.

a) Power Curve Fitted Midcell Diameter vs Time Measurements

b)

Figure A 1: a) Power curves of 17 WT cells with the average of the coefficients plotted in purple.

b) Distribution of α (shape of graph) values of the 17 cells. c) Distribution of c (rate of division)

values.
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